# Fish space use: development and deployment of acoustic landers with initial fish tracking results

#### Stephen Cotterell



Marine Ecosystems and Environmental Change Group







Marine Biology and Ecology Research Group







#### Introduction

Why I'm here

Historical situation and species of interest

Fish tracking equipment - choice of approach

Site choice, lander design

**Deployment and recovery** 

Work

Future and summary











#### Historical movement studies

At Marine Biological
Association since at least
1906



Still relatively little known about their **fine-scale** or **local** movements



Fig. 1.—Positions of recapture of marked rays which had moved more than 5 miles. Fishes which had exceeded 20 miles have period of liberty shown (in days). For further explanation see text p. 608.

.... = circle of 5 mile radius from Mewstone. . . . . = circle of 20 mile radius from Mewstone.

Steven (1936). *Journal of the Marine Biological Association*. **20**(3): 605-614











## Species: Rays, flatfish & dogfish

Long lived

Slow growing

Few offspring

Interesting behaviour



Widespread distribution



e.g. Raja clavata (Thornback ray)

#### Also sensitive to fishing











## **Tracking equipment**

Long term and fine scale **horizontal** movement analysis of many individuals via an array of acoustic **receivers** and **pingers** 

VR3 Receiver

Data storage & telemetry



V9 Pinger



for tag returns



Data Storage Tags log vertical data















#### First local VR3 deployment





Mooring

V

Lander

First area - local test site. Must be scientifically valid. Later to look at fish movements around wave farm (Wave Hub).











#### First local VR3 deployment

Close to where MBA carries out long term sampling

Surveyed with own **GeoSwath** onboard **MBA Sepia** 















## First local VR3 deployment

Close to where MBA carries out long term sampling

Surveyed with own GeoSwath onboard MBA Sepia













## Landscape fly through

Sidescan sonar (texture) draped over bathymetry (shape)













## Terrain analysis for antenna height



Bathymetry and visible seabed when antenna is placed at various heights above seafloor in Whitsand Bay











## Terrain analysis for antenna height



Bathymetry and visible seabed when antenna is placed at various heights above seafloor at Wave Hub site











## Terrain analysis for antenna height



2m antenna height is a good compromise between elevation and area cover











## Lander footprint



#### Required to fit on transit flatbed











#### Other lander considerations

Small footprint: w/o ground lines or surface marking

Simple to deploy.
Reliable onboard
recovery.
No chance of



accidental triggering



Cost effective: esp materials



Modular:
handling parts
and transport
when complete

No jettisoned ballast

Capable of long deployments



PRIMaRE

Stable:





## Lander design

Height, footprint etc etc fed into brief

Designed at MBA in PowerSHPAE-e™













## Lander design

Height, footprint etc etc fed into brief

Designed at MBA in PowerSHPAE-e<sup>™</sup>

Various components tested and refined through fields trials

















#### Lander construction

First 6 made locally by Underhill Engineering Ltd

Shown here ready for deployment
Self-recovery is optional
Can be fitted with more ballast or other instruments

Remaining 14 almost ready for delivery













#### Lander deployment

Assistance of NOC Oceano 2500 and deckbox, thank you!

Bracket made to aid attachment



45kg buoyancy added to release



Lander lowered to seabed















#### Lander recovery

Buoyancy from 2, 20cm deep-water floats.
Sonardyne LRT (with ranging capability) coupled to 100m of 4t, 8mm dyneema spooled

Metal lower shield and plastic top cowl keeps parts secure

into canister.

Line connected to lander via nylon shock-pendent.

On activation, floats bring LRT and line canister (paying out line) to the surface. Vessel hauls lander up and onboard.















#### Deployed VR3s on landers

6 VR3 landers now (since 4 Jan) at test site

50 locally caught fish tagged from 7 important species























#### Initial data

Between 14 Jan and 12 Mar 2010 (60 days), 11,086 pings were logged by 5 landers (L1 so far a problem) but with 11,048 being valid.

22 fishes have been resident for >5 days and 10 fish for >30 days.

All except 3 dogfish have been detected.

7 fish and tags so far returned for rewards (via M&FA / MMO).

Ongoing upload & additional tagging













## Track analysis

Acoustic tracking is prone to echoes giving infeasible locations, based on **speed**, **distance** and **time** 

Programs semi-automate and speed up the complex task of error checking

Newathaterweible representations and analytical further etherotexapplied

Other programs have been developed to process dive data









## Summary



Applying a mixture of survey, engineering and analysis tools, built on extensive experience and historical data, means we can study population level movements of fishes at fine-scales and over extended time periods

This is just a flavour of our work. For more details see:



#### www.mba.ac.uk/simslab



scotterell@plymouth.ac.uk or scotterell@mba.ac.uk









